Lydia Gibson
Problem
Data Source
Methods
Results
Conclusion
Further Research
How much prediction power is lost by not using a transformed response variable in a linear regression model?
Is it worth the inability to easily explain your model?
Parameter | Coefficient | SE | 95% CI | t(71) | p
--------------------------------------------------------------------------------------------------------
(Intercept) | 36421.43 | 2597.45 | [31242.27, 41600.59] | 14.02 | < .001
Major category [Computers & Mathematics] | 6324.03 | 3915.80 | [-1483.85, 14131.90] | 1.62 | 0.111
Major category [Engineering] | 20961.33 | 3162.87 | [14654.74, 27267.92] | 6.63 | < .001
Major category [Health] | 403.57 | 3823.34 | [-7219.95, 8027.09] | 0.11 | 0.916
Major category [Physical Sciences] | 5468.57 | 4023.95 | [-2554.95, 13492.09] | 1.36 | 0.178
Parameter | Coefficient | SE | 95% CI | t(71) | p
---------------------------------------------------------------------------------------------------
(Intercept) | 2.79e-05 | 9.88e-07 | [ 0.00, 0.00] | 28.23 | < .001
Major category [Computers & Mathematics] | -4.19e-06 | 1.49e-06 | [ 0.00, 0.00] | -2.81 | 0.006
Major category [Engineering] | -9.69e-06 | 1.20e-06 | [ 0.00, 0.00] | -8.06 | < .001
Major category [Health] | -1.47e-07 | 1.45e-06 | [ 0.00, 0.00] | -0.10 | 0.920
Major category [Physical Sciences] | -3.33e-06 | 1.53e-06 | [ 0.00, 0.00] | -2.17 | 0.033
# Comparison of Model Performance Indices
Name | Model | AIC (weights) | BIC (weights) | R2 | R2 (adj.) | RMSE
---------------------------------------------------------------------------------------
lm1_reduced | lm | 1618.1 (<.001) | 1632.1 (<.001) | 0.486 | 0.457 | 9393.617
lm2_reduced | lm | -1678.7 (>.999) | -1664.7 (>.999) | 0.573 | 0.549 | 3.573e-06
ggpubr
, easystats
, lindia
, ggstatsplot
) used in this presentation.Cal State East Bay STAT 694 Final Presentation